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Abstract
The aim of this paper is to study quantum and affine q-Krawtchouk polynomials
by means of operators of irreducible representations of the quantum algebra
Uq(su2). We diagonalize a certain operator I in such a representation and show
that elements of the transition matrix from the initial (canonical) basis to the
basis consisting of eigenfunctions of the operator I are expressed in terms of
quantum q-Krawtchouk polynomials. Then we find an explicit form of the
operator qJ3 in the basis of the eigenfunctions of I, in which it has the form
of a Jacobi matrix. Normalizing this basis and using the operator qJ3 , we
thus derive the orthogonality relations for quantum and affine q-Krawtchouk
polynomials. We show that affine q-Krawtchouk polynomials are dual to
quantum q-Krawtchouk polynomials. A biorthogonal system of functions
(with respect to the scalar product in the representation space) is also derived.

PACS numbers: 02.20.Uw, 02.30.Gp, 03.65.Fd

1. Introduction

In 1929, Krawtchouk [1] introduced polynomials orthogonal on a finite set. It was shown
by Koornwinder [2] that these polynomials are closely connected with irreducible unitary
representations of the Lie group SU(2). They appear when we consider matrix elements of
these representations as functions of a number of a row of the representation matrix in the
canonical (standard) basis.

The different types of q-Krawtchouk polynomials are related to representations of the
quantum group SUq(2) and the quantum algebra Uq(su2) (see [3–6]). It is known that
for integral values of q, q-Krawtchouk polynomials are connected with representations
of Chevalley groups (see, for example, [7]). It was shown recently how q-Krawtchouk
polynomials are related to spherical functions on the Hecke algebra of type b (see [8]).
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The aim of this paper is to show how quantum and affine q-Krawtchouk polynomials are
connected in a simple way with the representation theory of the quantum algebra Uq(su2).
(Note that the theory of representations of this algebra is simpler than the corresponding theory
for the quantum group SUq(2), and this makes more attractive to study quantum q-Krawtchouk
polynomials by means of representations of the algebra Uq(su2). In that case we do not need
the Hopf algebra structure of this algebra.) We use the method of the papers [9, 10], where
by means of representations of the algebra Uq(su1,1) other types of q-orthogonal polynomials
have been investigated.

In this paper we show how one can prove in a simple way (by using finite-dimensional
irreducible representations of the quantum algebra Uq(su2)) the orthogonality relations for
quantum and affine q-Krawtchouk polynomials. To achieve this we need two operators in
a representation (one is diagonal in the canonical basis and the second, denoted by I, has
the form of a Jacobi matrix in this basis; note that these two operators constitute a Leonard
pair, see [11] for a definition). The quantum q-Krawtchouk polynomials appear as entries
of the transition matrix from the canonical basis to the basis consisting of eigenfunctions
of the operator I. We normalize the last basis and obtain this transition matrix as a unitary
matrix. Then orthogonalities of rows and columns in this matrix give orthogonality relations for
quantum and affine q-Krawtchouk polynomials, respectively. In this way, affine q-Krawtchouk
polynomials are duals to quantum q-Krawtchouk polynomials (although affine q-Krawtchouk
polynomials are self-dual).

Note that there exists another motivation for studying the operator I in an irreducible
representation of Uq(su2), important for applications in physics. Many models of quantum
optics, such as Raman and Brillouin scattering, parametric conversion and the interaction
of two-level atoms with a single-mode radiation field (Dicke model), can be described by
interaction Hamiltonians of the form I (see [12] and references therein). From this point of
view it is necessary to have a detailed knowledge about operators of such type (diagonalization,
eigenvalues, eigenfunctions, etc). Therefore, we perform a detailed study of the operator I in
this paper.

Throughout the sequel we assume that q is a fixed number such that 0 < q < 1. We
use the theory of special functions and notations of the standard q-analysis (see, for example,
[13]). Our definition of q-numbers [a]q is as follows

[a]q = qa/2 − q−a/2

q1/2 − q−1/2

where a is any complex number or an operator.

2. The quantum algebra Uq(su2) and its representations

The quantum algebra Uq(su2) is an associative algebra, generated by the elements J+, J− and
J3, satisfying the relations

[J+, J−] = [2J3]q [J3, J±] = ±J±.

Nontrivial finite-dimensional irreducible representations of the algebra Uq(su2) are given by
positive integers or half-integers j (see [14], chapter 3). We denote such a representation,
acting in (2j + 1)-dimensional space, by Tj .

The linear space of the irreducible representation Tj can be realized as the space Hj of
all polynomials in x of degree less than or equal to 2j . The operators J3 and J± are realized
in this space as

J3 = x
d

dx
−j J+ = x

[
2j − x

d

dx

]
q

J− = 1

x

[
x

d

dx

]
q
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(see [5] and [6]). The canonical basis of the space Hj consists of monomials

f j
m(x) = cj

mxj+m m = −j,−j + 1, . . . , j cj
m = q(m2−j 2)/4

[
2j

j + m

]1/2

q

(1)

where the q-binomial coefficient
[

m

n

]
q

is defined as[m

n

]
q

:= (q, q)m

(q, q)n(q, q)m−n

= (−1)nqmn−n(n−1)/2 (q−m; q)n

(q; q)n

and (a; q)n = (1 − a)(1 − qa) · · · (1 − qn−1a).
We introduce a scalar product 〈·, ·〉 into Hj , assuming that

〈
f

j
m, f

j
n

〉 = δmn. This turns Hj

into a finite-dimensional Hilbert space. In the canonical basis (1) the operators J3 and J± act
as

J+f
j
m = √

[j + m + 1]q[j − m]qf
j

m+1 = q(j−n+1/2)/2

1 − q

√
(1 − qn+1)(qn−2j − 1)f

j

m+1

J−f j
m = √

[j − m + 1]q[j + m]qf
j

m+1 = q(j−n+3/2)/2

1 − q

√
(1 − qn)(qn−2j−1 − 1)f

j

m−1

qJ3f j
m = qmf j

m(x) = qn−j f j
m

where n = j + m. Obviously, the operator J3 is diagonal in the canonical basis. For the
operators J+ and J− we have J ∗

+ = J−.

3. The operator I and its spectrum

To study quantum and affine q-Krawtchouk polynomials, we require the operator I of the
representation Tj , which has the form

I = αq−3J3/4
(√

pqJ3+j − 1J+ + J−
√

pqJ3+j − 1
)
q−3J3/4 − aq−2J3 + bq−J3 (2)

where p is a fixed number such that p > q−2j and

α = p−1q−2j−1(1 − q) a = p−1q−2j (1 + q−1) b = p−1q−j (q−2j−1 + p + 1).

In the canonical basis the operator I has the form of a Jacobi matrix:

If j
m = p−1q−2n−3/2

√
(1 − qn+1)(qn−2j − 1)(pqn+1 − 1)f

j

m+1

+ p−1q−2n+1/2
√

(1 − qn)(qn−2j−1 − 1)(pqn − 1)f
j

m−1

− (p−1q−2n(1 + q−1) − p−1q−n(q−2j−1 + p + 1))f j
m (3)

where, as before, n = j + m. It is clear that I is a well-defined symmetric operator.
Eigenfunctions ψλ(x) of the operator I, Iψλ(x) = λψλ(x), can be represented as linear

combinations of the elements of the canonical basis:

ψλ(x) =
2j∑

n=0

pn(λ)f
j

n−j . (4)

By the action of the operator I upon both sides of this relation, one derives that
2j∑

n=0

pn(λ)
{
p−1q−2n−3/2

√
(1 − qn+1)(qn−2j − 1)(pqn+1 − 1)f

j

n−j+1

+ p−1q−2n+1/2
√

(1 − qn)(qn−2j−1 − 1)(pqn − 1)f
j

n−j−1

}

− dnf
j
m =

2j∑
n=0

pn(λ)f
j

n−j
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where

dn = p−1q−2n(1 + q−1) − p−1q−n(q−2j−1 + p + 1).

Comparing coefficients of a fixed f
j
m, one obtains a three-term recurrence relation for the

coefficients pn(λ):

p−1q−2n−3/2
√

(1 − qn+1)(qn−2j − 1)(pqn+1 − 1)pn+1(λ)

−p−1q−2n+1/2
√

(1 − qn)(qn−2j−1−1)(pqn−1)pn−1(λ) − dnpn(λ) = λpn(λ).

We make here the substitution

pn(λ) =
(

qn(q−2j ; q)n

(pq; q)n(q; q)n

)1/2

p′
n(λ)

and obtain the relation

q−2n−1(1 − qn−2j )p′
n+1(λ) + q−2n(1 − qn)(1 − pqn)p′

n−1(λ) − dnp
′
n(λ) = pλp′

n(λ)

which coincides with the recurrence relation for the quantum q-Krawtchouk polynomials

Kqtm
n (λ;p, 2j ; q) := 2φ1(q

−n, λ; q−2j ; q, pqn+1)

(see, for example, [15], section 3.14). Here 2φ1 is a basic hypergeometric function.
Consequently, in (4) we have

pn(λ) =
(

qn(q−2j ; q)n

(pq; q)n(q; q)n

)1/2

Kqtm
n (λ;p, 2j ; q). (5)

Thus, in decomposition (4) the coefficients pn(λ) are given by (5) and we have

ψλ(x) =
2j∑

n=0

(
qn(q−2j ; q)n

(pq; q)n(q; q)n

)1/2

Kqtm
n (λ;p, 2j ; q)f

j

n−j

=
2j∑

n=0

(−1)n/2q(2j+3)n/4 (q−2j ; q)n

(pq; q)
1/2
n (q; q)n

Kqtm
n (λ;p, 2j ; q)xn. (6)

In order to find a spectrum of the operator I we could use the theory of operators,
represented by Jacobi matrices (see, for example, [16], chapter VII), and find a spectrum of
the operator I by using the orthogonality relation for quantum q-Krawtchouk polynomials.
But we are going to show how the orthogonality relation itself for quantum q-Krawtchouk
polynomials can be derived by using the operator I.

To search for a spectrum of the operator I, we first determine how the operator qJ3 acts
upon eigenfunctions of the operator I. For this we use q-difference equation (3.14.5) in [15]
for quantum q-Krawtchouk polynomials, represented in the form

qnKqtm
n (q−y) = p−1qy(qy−2j − 1)Kqtm

n (q−y−1) + (1 − qy)(1 − p−1qy−2j−1)Kqtm
n (q−y+1)

+ p−1[qy(1 − qy−2j ) + pqy + qy−2j−1 − q2y−2j−1]Kqtm
n (q−y)

where K
qtm
n (q−y) ≡ K

qtm
n (q−y;p, 2j ; q). Next we multiply both sides of this relation by

bnf
j

n−j , where bn is the coefficient of K
qtm
n (λ) in expression (5) for pn(λ), sum over n and

take into account the decomposition (4). Since qJ3f
j

n−j = q−j+nf
j

n−j , we obtain the identity

qJ3+jψλ(x) = p−1λ−1(λ−1q−2j − 1)ψq−1λ(x) + (1 − λ−1)(1 − p−1λ−1q−2j−1)ψqλ(x)

+ p−1λ−1(1 − λ−1q−2j + p + q−2j−1 − λ−1q−2j−1)ψλ(x). (7)

In order to find values of λ, for which the functions ψλ(x) are eigenfunctions of the operator I,
we take into account the following. The operator I, acting upon eigenfunctions, leaves them
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invariant (up to a constant). Then by the action of the operator qJ3+j upon eigenfunctions
ψλ(x) we must obtain (2j + 1)-dimensional space or its subspaces. As we see from (7), when
qJ3+j acts on ψλ(x), it maps it to a linear combination of ψqλ(x), ψq−1λ(x) and ψλ(x). By the
action on these functions again, we obtain additional functions ψq2λ(x) and ψq−2λ(x). Further
by the action of qJ3+j , we again obtain new functions. This procedure cannot be continued
infinitely. Namely, some coefficients in (7) must vanish when we increase (decrease) the value
of λ. We see from (7) that a coefficient in (7) vanishes under increasing and under decreasing
of the value of λ only when λ = 1 and λ = q−2j .

Suppose that ψλ(x) with λ = 1 is an eigenfunction of the operator I. Putting λ = 1
into (7), we see that the operator qJ3+j maps this eigenfunction to a linear combination
of ψ1(x) and ψq−1(x). Thus, ψq−1(x) also belongs to the representation space Hj . The
action of the operator qJ3+j upon the function ψq−1(x) leads to the linear combination of
the functions ψ1(x), ψq−1(x) and ψq−2(x). Thus, ψq−2(x) also belongs to the representation
space. Continuing this procedure further, we conclude that the (2j + 1) functions ψq−k (x),
k = 0, 1, 2, . . . , 2j , belong to the representation space. Note that the action of qJ3+j upon
ψq−2j (x) does not lead to new elements of the representation space. Thus, under the condition
that the function ψq0(x) belongs to the representation space, we have obtained (2j + 1) linear
independent elements of the space Hj . If we start from ψq−2j (x), we will obtain the same
functions.

On the other hand, it is easy to check that if we take the function ψλ(x) with λ �= q−n,
n = 0, 1, 2, . . . , 2j , then by the action of the operator qJ3+j , we will obtain infinite-dimensional
space because in this case the coefficients in formula (7) do not vanish. Thus, only the functions
ψq−n (x), n = 0, 1, 2, . . . , 2j , belong to the representation space and constitute a basis in this
space.

Proposition 1. The spectrum of the operator I coincides with the set of points q−n, n =
0, 1, 2, . . . , 2j . The corresponding eigenfunctions are given by formula (6).

4. Orthogonality relation for quantum q-Krawtchouk polynomials

Now one can derive the orthogonality relation for the quantum q-Krawtchouk polynomials
by employing the same method as in [10]. For this we use the operator qJ3 . Introducing the
notation en(x) ≡ ψq−n (x), n = 0, 1, 2, . . . , 2j , we find that

qJ3+j en = −p−1qn(1 − qn−2j )en+1 + (1 − qn)(1 − p−1q−2j+n−1)en−1

+ p−1qn(1 − q−2j+n + p + q−2j−1 − q−2j+n−1)en.

As we see, the matrix of the operator qJ3+j in the basis en, n = 0, 1, 2, . . . , 2j , is not symmetric
(as we know, in the canonical basis this matrix is diagonal and, therefore, symmetric). The
reason for this is that the matrix of the transition from the canonical basis

{
f

j
m

}
to the

basis of eigenfunctions {en} is not unitary. It is equivalent to the statement that the basis
en = ψq−n (x), n = 0, 1, 2, . . . , 2j , is not normalized. Let us normalize it. For this we have
to multiply en by the corresponding numbers cn. Let ên = cnen, n = 0, 1, 2, . . . , 2j , be a
normalized basis. Then the matrix of the operator qJ3+j is symmetric in this basis. Since in
the basis {ên} the operator qJ3+j has the form

qJ3+j ên = −c−1
n+1cnp

−1qn(1 − qn−2j )ên+1 + c−1
n−1cn(1 − qn)(1 − p−1q−2j+n−1)ên−1

+ p−1qn(1 − q−2j+n + p + q−2j−1 − q−2j+n−1)ên

its symmetricity means that

c−1
n+1p

−1qncn(1 − qn−2j ) = −c−1
n cn+1(1 − p−1qn−2j )(1 − qn+1)
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that is,

cn

cn−1
=

√
−(1 − qn−2j−1)p−1qn−1

(1 − p−1qn−2j−1)(1 − qn)
.

Taking into account relation (5), we derive from here that

cn = c

(
(−p)−nqn(n−1)/2(q−2j ; q)n

(q; q)n(p−1q−2j ; q)n

)1/2

= c

(
(−1)nqn(n−1)/2(q; q)N(pq; q)N−n

(q; q)n(q; q)N−n(pq; q)N

)1/2

(8)

where c is a constant.
Thus, the relation

ên(x) =
2j∑

m=0

cnpm(q−n)f
j

m−j

where pm(q−n) are given by formula (5), connects two orthonormal bases in the representation
space Hj . This means that the matrix (amn),m, n = 0, 1, 2, . . . , 2j , with entries

amn = c

(
(−p)−nqn(n−1)/2(q−2j ; q)n

(q; q)n(p−1q−2j ; q)n

qm(q−2j ; q)m

(pq; q)m(q; q)m

)1/2

Kqtm
m (q−n;p, 2j ; q)

is unitary under appropriate choice of the constant c. In order to calculate this constant, we use
the relation

∑2j

n=0 |amn|2 = 1 at m = 0. Denoting this sum by A, we have

A = c2
2j∑

n=0

(q−2j ; q)n

(p−1q−2j ; q)n(q; q)n
(−1)nqn(n−1)/2p−n = c2

1φ1(q
−2j ;p−1q−2j ; q, p−1).

Using relation (II.5) of Appendix II in [13], one reduces it to

A = c2 (p−1; q)∞
(p−1q−2j ; q)∞

= (−p)NqN(N+1)/2

(pq; q)N
.

where N = 2j . Thus, one has

c2 = (pq; q)N/(−p)NqN(N+1)/2 (9)

and the relation
∑2j

n=0 amnam′n = δmm′ leads to the following orthogonality relation for the
quantum q-Krawtchouk polynomials K

qtm
n (q−m) ≡ K

qtm
n (q−m;p,N; q),N = 2j :

N∑
n=0

(−p)−nqn(n−1)/2(q−2j ; q)n

(q; q)n(p−1q−2j ; q)n
Kqtm

m (q−n)K
qtm
m′ (q−n) = hnδmm′ (10)

where

hn = (−p)NqN(N+1)/2

(pq; qN)

(pq; q)m(q; q)m

qm(q−2j ; q)m
.

After some transformations, using relations of Appendix I in [13], it reduces to the known
one, derived analytically (see, for example, [13], chapter 7).

5. Dual quantum q-Krawtchouk polynomials

The relation
∑2j

m=0 amnamn′ = δnn′ determines an orthogonality relation for the polynomials,
dual to the quantum q-Krawtchouk polynomials. We denote them by kn(q

−m;p,N; q). They
are given by the formula

kn(q
−x;p,N; q) = 2φ1(q

−x, q−n; q−N ; q, pqx+1).



Quantum algebra and q-Krawtchouk polynomials 2631

The orthogonality relation for them has the form

N∑
m=0

qm(q−2j ; q)m

(pq; q)m(q; q)m
kn(q

−m)kn′(q−m) = (−p)NqN(N+1)/2(q; q)n(p
−1q−2j ; q)n

(pq; q)N(−p)−nqn(n−1)/2(q−2j ; q)n
δnn′ . (11)

Note that the polynomials kn(q
−x;p,N; q) are multiple of the affine q-Krawtchouk

polynomials Kaff
n (q−x;p,N; q), which are given by the formula

Kaff
n (q−x;p′, N; q) := 3φ2(q

−n, 0, q−x;p′q, q−N ; q, q)

= (−p′q)nqn(n−1)/2

(p′q; q)n
2φ1(q

−n, qx−N ; q−N ; q, q−x/p′). (12)

Namely, we have

kn(q
−x;p,N; q) = (p′q; q)n

(−p′q)nqn(n−1)/2
Kaff

n (qN−x;p′, N; q) p′ = q−N−1/p.

Substituting this expression for kn(q
−x;p,N; q) into the orthogonality relation (11), one

derives the orthogonality relation for affine q-Krawtchouk polynomials Kaff
n (q−x;p′, N; q),

N∑
m=0

(p′q; q)m(q; q)N

(q; q)m(q; q)N−m

(p′q)−mKaff
n (q−m)Kaff

n′ (q−m) = (q; q)n(q; q)N−n

(p′q; q)n(q; q)N
(p′q)n−Nδnn′

which coincides with the known one (see, for example, [13], chapter 7).
Note that from the first expression in formula (12) for the affine q-Krawtchouk polynomials

Kaff
n (q−x;p′, N; q) it follows that these polynomials are self-dual. But as we have seen the

quantum q-Krawtchouk polynomials K
qtm
n (q−x;p,N; q) have duals, which are multiple of

affine q-Krawtchouk polynomials.

6. Realizations of Tj related to quantum q-Krawtchouk polynomials

The representation Tj is realized on the finite-dimensional Hilbert space Hj of polynomials
in x. Let us construct another realization of this representation, related to the quantum q-
Krawtchouk polynomials.

We introduce a finite-dimensional Hilbert space l2p, which consists of finite sequences
a = {ak|k = 0, 1, 2, . . . , 2j}. The scalar product in this Hilbert space is naturally defined as

〈a, a′〉0 = c2
2j∑

n=0

(−p)−nqn(n−1)/2(q−2j ; q)n

(q; q)n(p−1q−2j ; q)n
ana′

n

where c is given by formula (9) and the weight function coincides with the orthogonality
measure in (10). Then the sequences of values of the polynomials

pn(λ) =
(

qn(q−2j ; q)n

(pq; q)n(q; q)n

)1/2

Kqtm
n (λ;p, 2j ; q) (13)

from (5) on the set {q−k|k = 0, 1, 2, . . . , 2j} form an orthonormal basis in l2p. We denote
these sequences by {pn(q

−k)}, n = 0, 1, 2, . . . , 2j .
Let Hj be the Hilbert space as mentioned in section 2 and f (x) = ∑2j

n=0 anf
j

n−j (x) be an
expansion of f ∈ Hj with respect to the orthonormal basis (1). With every function f ∈ Hj

we associate the sequence {F(q−k) | k = 0, 1, 2, . . . , 2j} such that

F(q−k) = 〈f (x), ψq−k (x)〉
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where 〈·, ·〉 is the scalar product in Hj and ψq−k (x), k = 0, 1, 2, . . . , 2j , are the eigenfunctions
of the operator I. This defines a linear mapping � : f (x) → {F(q−k) | k = 0, 1, 2, . . . , 2j}
from Hj to the Hilbert space l2p. The following proposition is easily proved.

Proposition 2. The mapping � : f (x) → {F(q−k) | k = 0, 1, 2, . . . , 2j} establishes an
invertible isometry between the Hilbert spaces Hj and l2p.

It is directly checked that the isometry � maps basis elements f
j

n−j in the space Hj to the
basis elements {pn(q

−k) | k = 0, 1, 2, . . . , 2j} in the space l2p.
For the action of the operator I on the elements {F(q−k)} of the space l2p, we have

IF (q−k) = 〈If (x), ψq−k (x)〉 = 〈f (x), Iψq−k (x)〉 = q−k〈f (x), ψq−k (x)〉 = q−kF (q−k)

that is,

I {pn(q
−k) | k = 0, 1, 2, . . . , 2j} = {q−kpn(q

−k) | k = 0, 1, 2, . . . , 2j}. (14)

Taking into account formulae (13) and (14), as well as the recurrence relation for quantum
q-Krawtchouk polynomials, we deduce that

I {pn(q
−k)} = p−1q−2n−3/2

√
(1 − qn+1)(qn−2j − 1)(pqn+1 − 1){pn+1(q

−k)}
+ p−1q−2n+1/2

√
(1 − qn)(qn−2j−1 − 1)(pqn − 1){pn−1(q

−k}
− (p−1q−2n(1 + q−1) − p−1q−n(q−2j−1 + p + 1)){pn(q

−k)}. (15)

Comparing this formula with formula (3), we see that the operator I acts upon the basis
elements {pn(q

−k) | k = 0, 1, 2, . . . , 2j} by the same formula as upon the basis functions
f

j

n−j (x) of the space Hj . We also have

qJ3{pn(q
−k) | k = 0, 1, 2, . . . , 2j} = qn−j {pn(q

−k) | k = 0, 1, 2, . . . , 2j}.(16)

The operators (15) and (16) determine uniquely all other operators of the representation Tj on
lp. In particular, we have

J+{pn(q
−k) | k = 0, 1, . . . , 2j} = √

[2j − n]q[n + 1]q{pn+1(q
−k) | k = 0, 1, · · · , 2j}

J−{pn(q
−k) | k = 0, 1, . . . , 2j} = √

[2j − n + 1]q[n]q{pn−1(q
−k) | k = 0, 1, · · · , 2j}.

The results of this section allow us to prove the following assertion.

Proposition 3. Let pn(λ) be the polynomials determined in (13). Then in the Hilbert space
Hl we have

pn(I )f
j

−j = f
j

−j+n. (17)

Proof. The isometry � : Hj → l2p maps f
j

−j ≡ 1 to p0(λ) ≡ 1. By formula (14) we
have Ip0 ≡ I11 = q−k . Therefore, pn(I )p0 = pn(q

−k). Applying the mapping �−1 to this
identity, one obtains the desired relation (17). Hence the proposition is proved. �

Note that f j

−j in (17) is the lowest canonical vector. Thus, by the action of the polynomials
pn(I ), n = 0, 1, 2, . . . , 2j , upon this vector, we obtain all weight vectors of the representation
space.
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7. Biorthogonal system of functions

From the very beginning one could consider an operator

I1 = αq−3J3/4(J+ + J−(pqJ3+j − 1))q−3J3/4 − aq−2J3 + bq−J3

instead of the operator I, where, as before, p is a fixed number such that p > q−2j and

α = p−1q−2j−1(1 − q) a = p−1q−2j (1 + q−1) b = p−1q−j (q−2j−1 + p + 1).

This operator is well defined, but it is not self-adjoint. Repeating the reasoning of section 3,
we find that eigenfunctions of I1 are of the form

χq−m(x) =
2j∑

n=0

inq(2j+3)n/4 (q−2j ; q)n

(pq; q)n(q; q)n
Kqtm

n (q−m;p, 2j ; q)xn. (18)

The right-hand side can be summed with the help of formula (3.14.12) in [15]. We thus have

χq−m(x) = (iq−m+(2j+3)/4x; q)m · 2φ1(q
m−N, 0;pq; q, iq−m+(2j+3)/4x).

Now we consider another operator

I2 := αq−3J3/4((pqJ3+j − 1)J+ + J−)q−3J3/4 − aq−2J3 + bq−J3

where α, a and b are the same as above. This operator is adjoint to the operator I1 : I ∗
2 = I1.

Repeating the reasoning of section 3, we find that eigenfunctions of I2 have the form

ϕq−m(x) =
2j∑

n=0

inq(2j+3)n/4 (q−2j ; q)n

(q; q)n
Kqtm

n (q−m;p, 2j ; q)xn. (19)

The right-hand side of (19) can be summed with the help of formula (3.14.11) in [15]. We
thus have

ϕq−m(x) = (iqrx; q)N−m · 2φ1(q
−m, pqN−m+1; 0; q, iqrx)

where r = m − N + (2j + 3)/4.
Let us denote by 	m(x),m = 0,±1,±2, . . . , 2j , the functions

	m(x) = cmχq−m(x) m = 0, 1, 2, . . . , 2j (20)

and by �m(x),m = 0,±1,±2, . . . , 2j , the functions

�m(x) = cmϕq−m(x) m = 0, 1, 2, . . . , 2j (21)

where cm are given by formula (8).
Writing down the decompositions (18) and (19) for the functions 	m(x) and �m(x) in

terms of the orthonormal basis f l
n−j , n = 0, 1, 2, . . . , 2j , of the Hilbert space Hj and taking

into account the orthogonality relations (10), one finds that

〈	m(x),�n(x)〉 = δmn m, n = 0, 1, 2, . . . , 2j.

Therefore, one can formulate the following statement.

Theorem. The set of functions 	m(x), m = 0, 1, 2, . . . , 2j , and the set of functions �m(x),
m = 0, 1, 2, . . . , 2j , form sets of functions biorthogonal with respect to the scalar product in
the Hilbert space Hj .
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8. Concluding remarks

In this paper we have studied the operator I, represented in the canonical basis by a Jacobi
matrix. Its diagonalization is effected by employing quantum q-Kravchuk polynomials. We
have explicitly found a spectrum of this operator. As an immediate physical application of this
result one may try to construct a finite model of the quantum harmonic oscillator [17, 18] in the
following way. With the help of the operator I one constructs another operator I ′ := i[J3, I ].
Then it turns out that [J3, I

′] = iI . Consequently, in the irreducible representation Tj of the
quantum algebra Uq(su2) one may use the operators H := J3 + j + 1/2 (with the spectrum
n + 1/2, n = 0, 1, 2, . . . , 2j ), Q = I and P = I ′. This means that these three operators
satisfy the appropriate quantum-mechanical commutation relations

[Q,H ] = iP [H,P ] = iQ

with finite spectra for the position and momentum operators Q and P. A study of this model
is in progress.

Another possibility for constructing a finite quantum-mechanical system is to employ the
operator qJ3 and find two more operators, which commute with qJ3 in an appropriate way.
However, this model is more complicated than the previous one, and it will be addressed in a
future publication.
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